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A B S T R A C T

The distribution of relaxation times (DRT) is an approach that can extract time characteristics of an
electrochemical system from electrochemical impedance spectroscopy (EIS) measurements. Computing
the DRT is difficult because it is an intrinsically ill-posed problem often requiring regularization. In order
to improve the estimation of the DRT and to better control its error, a suitable discretization basis for the
regularized regression needs to be chosen. However, this aspect has been invariably overlooked in the
specialized literature. Pseudo-spectral methods using radial basis functions (RBFs) are, in principle, a
better choice in comparison to other discretization basis, such as piecewise linear (PWL) functions,
because they may achieve fast convergence. Furthermore, they can yield improved estimation by
extending the estimated DRT to the entire frequency spectrum, if the underlying DRT decays to zero
sufficiently fast outside the measured frequency range. Additionally, their implementation is relatively
easier than other types of pseudo-spectral methods since they do not require ad hoc collocation point
distributions. The as-developed novel RBF-based DRT framework was tested against controlled synthetic
EIS spectra and real experimental data. Our results indicate that the RBF discretization performance is
comparable with that of the PWL discretization at normal data collection range, and with improvement
when the EIS acquisition is incomplete. In addition, we also show that applying RBF discretization for
deconvolving the DRT problem can lead to faster numerical convergence rate as compared with that of
PWL discretization only at error free situation. As a companion to this work we have developed a MATLAB
GUI toolbox, which can be used to solve DRT regularization problems.
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1. Introduction

Due to its ability to provide useful information on both the
reaction kinetics and transport phenomena, electrochemical
impedance spectroscopy (EIS) [1] has been widely used to study
complex electrochemical systems including lithium-ion batteries
[2], fuel cells [3,4], ionic materials [5,6], solar cells [7,8], biological
systems [9–11], and medical devices [12,13]. Extracting physico-
chemical insights from the EIS is, however, non-trivial. Typically,
EIS experiments are analyzed by fitting the impedance data against
carefully chosen equivalent circuit models [14–17]. However, this
method is sometimes limited because such equivalent circuits may
not exist or multiple models may provide fits of analogous quality
[1,18]. In this regard, the distribution of relaxation times (DRT) can
* Corresponding author. Tel.: +85297232394; fax: +85223581543.
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http://dx.doi.org/10.1016/j.electacta.2015.09.097
0013-4686/ã 2015 Elsevier Ltd. All rights reserved.
act as a useful alternative for interpreting EIS data [19] or to assist
the equivalent circuit fitting based analysis [20].

The main goal of the DRT is to identify the characteristic
distribution of typical EIS timescales. In order to do that, the
experimental data Zexp measured at given frequencies are “fitted”
against a model ZDRT, which is obtained from the following
expression:

ZDRT fð Þ ¼ R1 þ
Z 1

0

g tð Þ
1 þ i2pft

dt ð1Þ

where R1 is the ohmic resistance, and gðtÞ is a suitable function
that describes the time relaxation characteristics of the electro-
chemical system studied. The expression (1) can be understood as
an equivalent Voigt circuit. In other words, the DRT model
impedance is composed by an Ohmic resistance (at f ! 1) plus
the sum of infinitely series of parallel resistors and capacitors.
Since the frequency data is often collected on the logarithmic
scale with a given number frequencies per decade, then (1) is



Nomenclature

g tð Þ Distribution function of relaxation times, also
written as g lntð Þ

gexactðtÞ Analytical solution of the DRT
ĝðtÞ Deconvolved DRT
d lntð Þ Dirac function centered at 0
fm tð Þ PWL discretization basis
fm xð Þ RBF discretization basis
ZDRT EIS for fitting the DRT model
Zexp Experimental EIS data
Z0
exp Real impedance vector

Z00
exp Imaginary impedance vector

A0 Approximation matrix of the DRT for the real part
of the EIS data

A00 Approximation matrix of the DRT for the imaginary
part of the EIS data

M Matrix of the norm of the first derivative of gðtÞ
L Cholesky decomposition of M, i.e.LTL ¼ M
x Vector of parameter for DRT approximation with

respect to the discretization basis
S xð Þ Sum of squares with respect to vector x
R1 Ohmic resistance
Rct Charge transfer resistance
r2 Residual
r2tot Average total residual
r2bias Average residual relative to bias
r2var Average residual relative to variance
n2bias tð Þ Integrand of the average residual relative to bias
n2var tð Þ Integrand of the average residual relative to

variance
f Frequency
t Relaxation time
t0 Characteristic relaxation time
l Regularization parameter
m Shape factor of a RBF
e Error of the stochastic test
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rewritten as:1

ZDRT ¼ R1 þ
Z 1

�1

g lntð Þ
1 þ i2pft

dlnt ð2Þ

where g lntð Þ ¼ tg tð Þ
Finding g lntð Þ is challenging because fitting (2) against

experimental data is an intrinsically ill-posed problem. Many
methods for determining g lntð Þ have been developed and
discussed in the literature, including the evolutionary program-
ming techniques employed by Tsur and co-workers [22–25], Monte
Carlo method as developed by Tuncer and McDonald [26,27], the
maximum entropy method by Hörlin [28], and the Fourier filtering
assisted fitting by Tiffée group and Boukamp [29,30]. In the present
work we use the regularized regression approach [31–34]. The DRT
is obtained by a two-step process: first, g lntð Þ is discretized in a
convenient basis second, the discrete parameters are obtained by
regularized regression.

The choice of the basis for discretizing gðIntÞ is of great
importance because it can reduce the approximation error [35].
However, to our knowledge, the DRT literature still misses studies
1 This form of DRT model assumes that the inductive and capacitance feature of
the data are insignificant. When inductive effect is not negligible, one should add
ivL into (2). When capacitive effect is significant, one should analyze the low
frequency data in the effective capacitance plane [21].
focusing on the basis selection. Apart from the Voigt circuit
approximation, the gðIntÞ can be estimated using piece-wise
linear (PWL) approximation [36,37]. This approach assumes that
the gðIntÞ is linear between each consecutive timescale studied. In
this work, we focus on an alternative choice of basis, consisting of
radial basis functions (RBFs), in order to enhance the DRT
estimation quality.

RBFs have been widely utilized for approximating functions in
applied mathematics [38,39], in areas as diverse as neural networks
[40], partial differential equations [41], statistical estimation [42],
machine learning [43], and computer graphics [44]. An RBF is a
symmetric real-valued function depending on the distance from a
given center, i.e., RBF ¼ fmðjx � cjÞ where the center is located at
x ¼ c and m is a suitable scale factor or shape parameter. The major
advantage of RBF-based approximations is their fast numerical
convergence [38]. RBF-based approximations can achieve spectral
accuracy, which means that the error of the approximation may
decrease exponentially as the number of discretization points
increases [45,46]. Moreover, RBF-based approximations can help to
avoid any Runge phenomenon-like issues, that is, the problem of
oscillation at the edges of an interval during high degree
polynomial interpolation over a set of equispaced interpolation
points [47]. Nonetheless, RBF-based approximation holds an extra
advantage over other pseudo-spectra methods because it does not
require any special distribution of the collocation points, which
makes its implementation simpler and more flexible [47].

As described later in the article, applying RBF approximation has
several important features. First, we are essentially generalizing the
typical Voigt circuit approximation, which discretizes the DRT with a
sum of Dirac distributions. Second, carefully chosen RBFs are defined
over the entire frequency spectrum. Therefore, by applying RBFs to
DRTestimation, we canextend the DRT interval from 1

fmax
� t � 1

fmin
to

the full set of relaxation times 0 � t < 1, when the underlying
DRT decays to zero as t ! 0 and t ! 1. Third, the shape factor can
act as another regularizing parameter, in addition to the
regularizing parameter with respect to the DRT derivative.

In this work, we developed RBF-based DRT, and we critically
compared this approach with PWL-based DRT by applying both
synthetic and real experiments. We show that the result of the
RBF-based DRT is generally comparable with that of the PWL-
based DRT at normal data collection range and improvement in
convergence rate at error free situation. Moreover, as a result of
extending the DRT results outside the measured frequency range
with the RBF basis, the accuracy of the estimation improve only
when the data collection frame is bounded by the experimental
limitation. The code developed in this work is released as an open
source MATLAB graphical user interface (GUI).

2. Theory

2.1. Discretization of the DRT

As outlined above, the ZDRT is commonly approximated using
Voigt circuits [48,49]. This approximation can be understood by
writing g lntð Þ as a sum of Dirac distributions d lntð Þ centered at M
characteristic times t1; t2; . . . ; tM, i.e.

g lntð Þ ¼
XM
m¼1

xmd lnt � lntmð Þ ð3Þ

where xm are unknown parameters to be estimated by fitting.Using
the expression (3), the (2) may be simplified as [49,50]

ZDRT fð Þ ¼ R1 þ
XM
m¼1

xm
1 þ i2pftm

ð4Þ



Table 1
List of radial basis functions used in this work.

fm xð Þ FWHM

Gaussian exp � mxð Þ2
� �

1:665
m

C2 Matérn exp �jmxjð Þ 1 þ jmxjð Þ 3:357
m

C4 Matérn
exp �jmxjð Þ 1 þ jmxj þ 1

3jmxj2
� �

4:661
m

C6 Matérn
exp �jmxjð Þ 1 þ jmxj þ 2

5jmxj2 þ 1
15jmxj3

� �
5:699
m
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Fitting the experimental data Zexp f nð Þ against ZDRT fð Þ is a well-
posed problem if the number of Voigts element M is smaller than
the number of experimental frequencies N [51]. Also, the DRT
obtained will be discrete due to the nature of Dirac distributions.
However, most electrochemical systems (e.g. the ZARC elements)
are such that g lntð Þ is continuous. Therefore, one needs to
approximate g lntð Þ as a sum of functions that are at least
continuous. The use of PWL functions is perhaps the simplest
approach. This consists of “tent” functions f1ðtÞ; f2ðtÞ; :::; fMðtÞ
collocated at t1; t2; . . . ; tM respectively with the following
expression [36,52]

fmðlntÞ ¼

1 � lnt � lntm
lntm�1 � lntm

; tm�1 < t � tm

1 � lnt � lntm
lntmþ1 � lntm

; tm < t � tmþ1

0; t < tm�1 ort > tmþ1

8>>>>>><
>>>>>>:

ð5Þ

We then set the approximated g lntð Þ to be [37,53]

g lntð Þ ¼
XM
m¼1

xmfm lntð Þ ð6Þ

where g lntð Þ is zero for t < t1 and t > tM [36]. In order to extend
the support of the approximated g lntð Þ to the set �1 < lnt < 1,
the Dirac distributions or the PWL functions may not be used. We
need instead to use functions whose support extends to the entire
real line. In this context, we can write that:

g lntð Þ ¼
XM
m¼1

xmfm jlnt � lntmj
� � ð7Þ

where fm jlnt � lntmj
� �

is an RBF with center timescale tm and
shape parameter m, see Table 1 for more details. The expansion (7)
extends the Voigt circuits approximation, because it is physically
equivalent to having M generalized RC circuits each characterized
by a center characteristic timescale tm and a hierarchical
distribution of infinitesimal RC circuits around that timescale as
shown in Fig. 1. Various RBFs can be used for approximating the
DRT. In this work we focus only on the special subset of positive-
definite RBFs [54], namely Gaussian and differentiable Matérn
functions up to order 62. We choose the Matérn functions because
their differentiability properties are not the same as those of
Gaussians3 (in contrast the PWL is differentiable only once). The
RBFs used are summarized in Table 1.4
2 The PWL function is a symmetric real-valued function depending on the
distance from the collocation center when the collocation points are evenly
distributed. In other word, a PWL function can be regarded as a RBF when it is
applied to uniform collocation points.

3 The C2 Matérn is twice differentiable, the C4 Matérn is 4 times differentiable,
and the C6 Matérn is 6 times differentiable, while the Gaussian RBF is differentiable
infinitely many times.

4 The MATLAB GUI developed in this study can also deal with other types of RBF,
including inverse quadric, inverse quadratic, and Cauchy functions.
2.2. Estimation of the DRT

Upon discretizing gðtÞ,5 the DRT is estimated by fitting the
impedance model ZDRT fð Þ, described by (2), against the experi-
mental data Zexp fð Þ. This can be obtained from a real EIS
experiment or generated from a stochastic process. Fitting implies
the minimization of the following sum of squares:

S ¼
XN
n¼1

w0
n Z0

DRT f nð Þ � Z0
exp f nð Þ� �2 þ w00

n Z00
DRT f nð Þ � Z00exp f nð Þ� �2h i

ð8Þ
If we set the impedance model ZDRT f nð Þ, given in equation (1), in
matrix form as:

ZDRT f nð Þ ¼ R1 þ A0x
� �

n þ A00x
� �

n ð9Þ

where the matrixes A0 and A00can be found in the Appendix, then we
can rewrite (8) as:

S xð Þ ¼ V0 R11 þ A0x � Z0
exp

� ���� ���2 þ V00 A00x � Z00
exp

� ���� ���2 ð10Þ

where 1 is a column vector with N entries all equal to 1. The
expression of V0 and V00 can be found in the Appendix. By
minimizing S xð Þ, one can obtain the vector x, which can then be
applied to estimate g tð Þ using relation (7), as illustrated in Fig. 2.
However, as previously mentioned, the problem above is ill-posed
if M � N or M >> N [51]. That is, minimizing S xð Þ will likely result
in an oscillating DRT. The reduction of these oscillations can be
achieved by adding an extra penalty, which can be a term
proportional to the norm of the first or second derivative of the

g tð Þ function, i.e., s
dgðtÞ
dlnt

s
����

����
2

. If this term is added to (10), then

S xð Þcan be then rewritten as:

S xð Þ ¼ V0 R11 þ A0x � Z0
exp

� ���� ���2 þ V00 A00x � Z00
exp

� ���� ���2
þ lxTMx ð11Þ

where the matrix M is derived in Appendix A. The minimization of
S xð Þ is the well-known Tikhonov regularization problem. We can
apply Cholesky decomposition of M, i.e., M ¼ LTL, where L is a
lower triangular matrix with real and positive diagonal entries
[55]. Therefore, (11) can be rewritten as:

S xð Þ ¼ V0 R11 þ A0x � Z0
exp

� ���� ���2 þ V00 A00x � Z00
exp

� ���� ���2
þ l Lxk k2 ð12Þ

Minimizing S xð Þ ensures that the DRT result adheres well to the
data with the oscillations controlled by the coefficient l. The
greater the l, the lesser the DRT oscimllation. The l value, however,
cannot be too large as it may cause over smoothing, resulting in the
loss of features that carry physically relevant information. To
compare the various discretization methods, we choose l such
that the squared residual between numerically computed DRT and
the exact DRT is minimized. As a supplement, we apply Re-Im cross
validation [36] to estimate the optimal l.

We note that A0 and A00 in (11) highly depend on the shape factor
of the RBF m. As shown in Table 1 m is related to the full width at
half maximum (FWHM) of the RBFs used for discretization. The
smaller m is, the greater will be the FWHM of the RBFs as indicated
5 With some abuse of notation, we identify g lntð Þ with g tð Þ.



Fig. 1. Schematic of the DRT using RBF discretization.

Fig. 2. Schematic of the RBF-based DRT. g tð Þ is first discretized with RBFs as a function of vector of parameters x (top left panel). Minimizing the sum of squares
leads to estimation of x (top right panel). g lntð Þ is estimated from x (bottom panel).
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Fig. 3. Schematic showing the relation between the FWHM and the separation of
the collocation points applied in this study. The double arrow indicates the FWHM
for the central RBF. Fig. 4. The bias-variance tradeoff of the computed DRT of the ZARC model using

Gaussian discretization. The vertical green dash-dot line indicates the value of the
regularization parameter l, which minimized the total residual.
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by the double arrow of Fig. 3. In general, if m is large, the computed
DRT will be endowed with a discrete nature, and it will oscillate
near each collocation point6. On the other hand, if m is small, the
computed DRT may be flattened, leading to the disappearance of
local DRT features. This implies that the shape factor m is another
potential regularizing tool for the DRT analysis. Here, we choose m
such that FWHM of the RBFs used for discretization is equal to
twice the distance between two consecutive collocation points.
Under the assumption that the collocation points are equally
spaced in logarithm scale, we can write that:

FWHM ¼ 2 Dlnt
� � ð13Þ

Using the relation (13), the FWHM of the RBFs at collocation point
tm equals the log-scale distance between tm�1 and tmþ1, as
illustrated in Fig. 3.

2.3. Stochastic Experiments

Wewill employ stochasticexperiments obtained from EISspectra
with close form DRT to demonstrate the applicability of the RBFs for
DRT approximation. The synthetic experiments data Zexp fð Þ are
obtained from a noise-corrupted analytical model Z fð Þ [56]:

Zexp fð Þ ¼ Z fð Þ þ ejZ fð Þj h0 þ ih00ð Þ ð14Þ
where e is the noise level (we take e ¼ 0:5 % in following study
unless otherwise specified), and h0 and h00 are two independent
normally distributed random variables with 0 mean and unit
variance. While the proposed error structure is plausible and
corresponds to a weight proportional to the absolute value of the
impedance, the errors may take a more complicated form
depending on the particular system studied as discussed by other
authors [18,57]. In order to generalize this work, we will also
analyze with DRT the impedance spectroscopy data obtained from
real experiments.

2.4. Benchmarking the Computed DRT

In order to compare the quality of the proposed approxima-
tions, we will use the normalized relative squared residual r2

defined as the square of the difference between the estimated DRT,
6 When the area normalized Gaussian RBF fm xð Þ ¼ mffiffiffi
p

p exp � mxð Þ2
� �

is used for
discretization and if m ! 1 then the Voigt, (3), and the RBF representation,
by (7), coincide. In such a case, RBF can also be applied to solve for discrete
g lntð Þ, e.g. models consist of RC elements.
ĝ tð Þ, and the analytical (also the exact) DRT, gexact tð Þ, divided by
the square of the norm of the exact DRT, that is:

r2 ¼
R1
�1 gexact � ĝ
� �2dlntR1
�1 g2

exactdlnt
ð15Þ

where, for brevity, we omit the t argument in the right hand side.
The average squared residual obtained from a batch of K synthetic
experiments is given by:

r2tot ¼
1
K

XK
k¼1

R1
�1 gexact � ĝk

� �2dlntR1
�1 g2

exactdlnt
ð16Þ

where the subscript k denotes the DRT estimated from the kth

simulated experiment. In fact, r2tot can be regarded as the sum of
two squared residual, the first squared residual is the bias while the
second is the variance7:

r2tot ¼ r2bias þ r2var ð17Þ
where

r2bias ¼
R1
�1 gexact � 1

K

XK

j¼1
ĝ j

� �2
dlntR1

�1 g2
exactdlnt

ð18Þ

and

r2var ¼
1
K

XK
k¼1

R1
�1 ĝk � 1

K

XK

j¼1
ĝ j

� �2
dlntR1

�1 g2
exactdlnt

ð19Þ

With these indicators, we will compare the different discretization
methods by monitoring r2tot. To investigate how the bias and
variance depend on t, we shall also define the following two
quantities:

n2bias tð Þ ¼
gexact tð Þ � 1

K

XK

j¼1
ĝ j tð Þ

� �2
R1
�1 g2

exactdlnt
7 The relationship of (17) to (19) can be verified by noticing that,



Table 2
The minimum residual, optimal l, and predicted optimal l from cross validation test for the ZARC model with different discretization functions and data collection
scenarios.

Normal range 10 ppd Normal range 5 ppd Half width range 10 ppd

r2tot lOPT lCV r2tot lOPT lCV r2tot lOPT lCV

Piecewise linear 1.07E-02 1.91E-03 2.14E-03 1.52E-02 2.63E-03 2.88E-03 1.61E-02 2.75E-03 3.09E-03
Gaussian 1.05E-02 8.13E-03 7.41E-03 1.38E-02 5.89E-03 5.89E-03 1.15E-02 6.76E-03 9.55E-03
C2 Matérn 9.93E-03 7.94E-03 7.94E-03 1.31E-02 5.01E-03 6.46E-03 1.18E-02 6.31E-03 1.02E-02
C4 Matérn 9.61E-03 8.91E-04 8.32E-04 1.40E-02 6.31E-04 6.31E-04 1.14E-02 7.59E-04 1.07E-03
C6 Matérn 1.02E-02 3.80E-05 3.72E-05 1.35E-02 2.63E-05 3.39E-05 1.19E-02 2.88E-05 4.47E-05

Fig. 5. The exact DRT result of the ZARC element case, panel (a), the average computed DRT with normal data range and 10 ppd data collection density using Gaussian
discretization, panel (b), and using PWL discretization, panel (c), at optimal l. The grey band in panel (b) and (c) shows the 3s confidence interval of the result.

8 The analytical solution of an impedance model can be derived by the equation
1 0 �lntþip

� �
00 �lnt�ip
� �h i
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and

n2var tð Þ ¼ 1
K

XK
k¼1

ðĝ k tð Þ � 1
K

XK

j¼1
ĝ j tð ÞÞ

2

R1
�1 g2

exactdlnt
ð21Þ

where r2bias ¼
R1
�1 n2biasðtÞdlnt and r2var ¼

R1
�1 n2varðtÞd lnt.

3. Results and Discussion

We tested the performance of the RBF discretization using both
synthetic and real experiments. In the first part, we used different
discretizations, based on RBFs and PWL functions, and benchmarked
the DRT quality obtained from synthetic EIS experiments. Synthetic
experiments are needed since the inverse problem of approximating
for the DRT is susceptible to the noise of the data. In the second part,
we applied the RBF-based DRT to a battery example.

These synthetic experiments were based on three simple models:
a ZARC element [58], two ZARCs in series [59], and a Havriliak-
Negami element [60]. The availability of closed form analytical
solutions from literature for the three chosen models allows
comparison with the computed results8. To illustrate the advantage
of applying RBFs, we considered three data collection scenarios: 1)
g tð Þ ¼ �p Z e 2 þ Z e 2 [61].



Fig. 6. The residual due to bias, panel (a), (c), and residual due to variance, panel (b), (d), over the range of ZARC case at lOPT. Panel (a) and (b) are the residual results for
the normal data range 10 ppd. Panel (c) and (d) are the residual results for the reduced data range.
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normal range (10�2 Hz < f m < 106 Hz) with 10 ppd (collocation
points per decade), 2) normal range with 5 ppd and 3) half range (

100 Hz < f m < 104 Hz) with 10 ppd. We firstly demonstrated that
regularization with RBF discretization can actually lead to a
reasonable approximation of the exact DRT of various models. As
the EIS data point distribution is an important factor affecting the
DRT approximation quality, we then studied the effect of
collocation points density and data collection range on the
approximated DRT. This, in turn, allowed us to investigate how
the performance of the RBF-based DRT compared with PWL-based
DRT under different scenarios.

3.1. Synthetic Experiments

3.1.1. ZARC Model
Firstly, we took synthetic experiments obtained from an exact

ZARC model. We considered this case because it is commonly used
when interpreting the EIS of practical systems including fuel cells
and batteries [62,63]. The ZARC model is basically a resistor (R1) in
series with a circuit comprising a constant phase element (CPE) in
parallel with a resistor [58]. The impedance response of this ZARC
model is given by:

Z fð Þ ¼ R1 þ Rct

1 þ i2pft0ð Þf
ð22Þ

where R1 ¼ 10 V,Rct ¼ 50 V, t0 ¼ 0:01 s and f = 0.7. The
corresponding g tð Þ is given by [19]

g tð Þ ¼ Rct

2p
sin 1 � fð Þpð Þ

cosh fln t
t0

� �� �
� cos 1 � fð Þpð Þ

ð23Þ
After randomly drawing 1000 synthetic experiments, we per-
formed regularized regression at various l. As shown in Fig. 4, for
the case of Gaussian discretization the r2tot strongly depends on the
regularization parameter l, where the squared residual variance
r2var dominates at low l values and the squared residual bias r2bias
dominates at high l values. This is intuitive because the smaller the
value of l, the larger the oscillations are. This implies that the
computed DRT has large variance. On the other hand, the larger the
value of l, the greater the flattening effect of the regularization
term. Therefore, there will be greater mismatch between the exact
DRT and estimated DRT. The average squared residuals for other
types of discretizations can also be plotted with respect to l that
gives a similar trend. Thus, we can obtain the optimal l, denoted as
lOPT, for each type of discretization and each data collection
scenario. We stress that for lOPT the combined effect of the squared
residuals relative to the variance and the squared residuals relative
to bias is minimized. For comparison, the predicted optimal l
values, denoted as lCV, are also obtained through the Re-Im cross-
validation tests. Table 2 shows the lOPT values, the lCV values and
the average squared residuals of the computed DRT at lOPT for
different discretization methods. As illustrated in Fig. 5, at lOPT the
average DRT as computed using the PWL (panel c) and Gaussian
function (panel b) are reasonably close to the exact solution shown
in Fig. 5a. This is reflected also by the average squared residual as
shown in Table 2. Because of the synthetic error, the as-computed
DRTs from individual sets of stochastic data are not identical to one
another. We have calculated the relaxation time dependent
variance s of the computed results over t. The 3s confidence
band is indicated by the grey region as shown in Fig. 5. We also
notice that in Table 2 the average squared residuals of the four



Fig. 7. The average DRT value and the confidence region for Gaussian discretization, panel (a) and PWL discretization, panel (b) for the ZARC case with half data collection
width. Panel (c) shows the comparison of the average values with the exact solution.
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types of RBF discretization are similar for all of the data collection
scenarios. This can be attributed to the fact that we set m of each
RBF based on relation (13) keeping identical FWHMs for all RBFs.
Thus, in order to streamline the following discussion, we shall use
Gaussian function as the representative RBF.
Fig. 8. The squared residual of the deconvolved DRT of the ZARC model with respect

to the number of collocation points per decade at error free situation. l ¼ 10�11 is
chosen for regularization.
As shown in Fig.6 panel a and b, the biasandvariancewithrespect
tot, i.e., (20) and (21), of both PWL and Gaussian are comparable
over the data collection range. The bias is highest at t ¼ 0:01 s,
which corresponds to the DRT peak. The bias notably increases at
the edges of the data collection range. Therefore, the peak and the
edges of the DRT are more susceptible to the bias in approximation.
In addition, the variance is the greatest at t � 0:1 s, and in general
it increases with t. This is because the error structure considered,
see (14), depends on jZ fð Þj, whose magnitude increases with
decreasing f (or increasingt). Similar as the bias, the variance
increases near the edges of the data collection range indicating that
the extremities of the DRT are more susceptible to increased
variance.

When the width of the collocation points range is halved, the
average squared residuals of the DRTs computed by both methods
increase, implying that the discrepancy between the computed
results and the exact solution is greater, see Table 2. Reducing the
range has a greater effect on the DRT estimated with the PWL
discretization. If the range of data collection is reduced by half, the
squared residuals of the computed DRT using PWL discretization
increase by about 50 %, whereas the squared residuals of the RBFs
increase only by 16-19 %. The average DRT profile when the data
collection range is reduced by half is shown in Fig. 7. As shown in
Fig. 7a, the Gaussian discretization allows the approximating the



Fig. 9. The average squared residual of the deconvolved DRT of the ZARC model at error level of 0.1%, panel (a), the average squared residual at optimal l, panel (b), and the
optimal l, panel (c), with respect to the number of collocation points per decade.
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convergence of g tð Þ as t ! 0 andt ! þ1. Also a better estimation
at the edge of data collection range is observed as compared to the
PWL case, Fig. 7c. This illustrates the slight improvement in the
estimation of DRT with Gaussian discretization.

If we plot the bias and variance results against t, we observe
that the peak of the bias is found at t ¼ 0:01 s, and is increased at
the two edge of the data collection range, i.e., when t equals to

10�4 and 1 s, as illustrated in Fig. 6c. The PWL-based DRT leads to a
larger bias over the entire t range. On the other hand, the variances
for the two type of discretizations, as shown in Fig. 6d, remain at
the same level over the entire timescales with a general increasing

trend between 10�4 and 1 s, which is also illustrated by the
confidence interval in Fig. 7a and b. We note that both the variance
and bias of the Gaussian-based DRT decrease quickly as t ! 0 and
t ! þ1 because Gaussian discretization allows the estimation of
the DRT profile outside the data collection range, such that ĝk tð Þ !
0 as t ! 0 and t ! þ1, as shown in Fig. 7a. When gexact tð Þ ! 0 as
t ! 0and t ! þ1, the bias of the Gaussian-based DRT then
decreases eventually in accordance with gexact tð Þ. Also, as t ! 0

and t ! þ1, ĝk tð Þ ! 0 and hence,1K
XK
k¼1

ĝk tð Þ ! 0, the variance of

the Gaussian-based DRT thus reduces quickly by expression (21).
Moreover, when the collocationpoint density is lower by half, the

squared residuals increase by 30-40 % for all types of discretization,
see Table 2. In other word, the squared residuals of the RBF-based
DRT do not reduce in a faster rate as compared with that of the PWL-
basedDRT with respecttothecollocationpoint density. Thisseemsto
contradict with the spectral convergence as mentioned in the
literature [45,46]. To investigate the convergence of the discretiza-
tion methods, we deconvolve the DRT from the error free impedance
data of the ZARC model (with the parameters being the same as
previously) with respect to the variation of collocation point density.
We then compare the squared residual, as defined by (15), of the
Gaussian-based DRT result with that of the PWL-based DRT result at
various collocation point density. As shown in Fig. 8, the squared
residual of the Gaussian-based DRT decays with a much faster rate
than that of PWL-based DRT, especially when the collocation point
density is coarse.

To further study the effect of error level on the convergence
rate, we add 0.1 % random error to the ZARC model and investigate
the variation of squared residual with respect to collocation point

density. For l ¼ 10�1 to 10�3, Gaussian discretization will lead to
faster convergence rate as compared with the PWL discretization
as shown in Fig. 9a. This is true, however, only when l are not
optimized. As shown in Fig. 9b, if we optimize l with respect to the
collocation point density, it is shown that the Gaussian discretiza-
tion converge faster than the PWL discretization only when the
collocation point density is small. At collocation point density of 3
ppd or above, the convergence rate of the two discretization
methods are comparable, which is in agreement with the results in
Table 2. Thus, the convergence rate of RBF based DRT is faster than
that of the PWL-based DRT only at the error free situation, when
the optimization of l is not necessary.



Fig. 10. The exact DRT result of the double ZARC element case, panel (a), the average computed DRT with normal data range and 10 ppd data collection density using Gaussian
discretization, panel (b), and using PWL discretization, panel (c), at optimal l. The grey band in panel (b) and (c) shows the 3s confidence interval of the result.

Table 3
The minimum residual, optimal l and predicted optimal l from cross validation test for the double ZARC model with different discretization functions and data
collection scenarios.

Normal range 10 ppd Normal range 5 ppd Half width range 10 ppd

r2tot lOPT lCV r2tot lOPT lCV r2tot lOPT lCV

Piecewise linear 1.37E-02 2.34E-03 3.02E-03 1.95E-02 3.47E-03 4.79E-03 5.19E-02 3.72E-03 1.38E-03
Gaussian 1.31E-02 1.10E-02 1.05E-02 1.83E-02 7.94E-03 1.05E-02 2.95E-02 1.02E-02 3.80E-03
C2 Matérn 1.25E-02 9.77E-03 1.10E-02 1.79E-02 6.46E-03 1.17E-02 2.83E-02 1.02E-02 7.08E-03
C4 Matérn 1.16E-02 1.02E-03 1.15E-03 1.74E-02 8.32E-04 9.77E-04 2.86E-02 1.12E-03 5.75E-04
C6 Matérn 1.27E-02 4.68E-05 5.25E-05 1.81E-02 3.39E-05 5.89E-05 2.91E-02 4.68E-05 2.95E-05
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3.1.2. Series ZARC Model
In order to demonstrate that the above discussion can also be

applied to systems with overlapping relaxation characteristics, we
considered the case when two ZARCs are placed in series. This
equivalent circuit is also commonly used in practical analysis of EIS
data in the fuel cell community [62,63]. The impedance response of
this circuit is:

Z fð Þ ¼ R1 þ Rct

1 þ i2pft0ð Þf
þ R0

ct

1 þ i2pft00ð Þf
0 ð24Þ

Although, in experiment, it is more common to have two CPE elements
such that R0

ct 6¼ Rct and f0 6¼ f, in order to streamline our study, and



Fig. 11. The average DRT value and the confidence region for Gaussian discretization, panel (a) and PWL discretization, panel (b) for the series ZARC case with half data
collection width. Panel (c) shows the comparison of the average values with the exact solution.
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avoid extra degree of freedom on R0
ct or f0, here we just consider

the case where R0
ct ¼ Rct and f0 ¼ f (equal to the parameter values

in previous section) but with t0 ¼ 0:02 s and t00 ¼ 0:001 s. The
corresponding DRT for the series ZARC model is:

g tð Þ ¼ Rct

2p
sin 1 � fð Þpð Þ 1

cosh fln t
t0

� �� �
� cos 1 � fð Þpð Þ

0
@

þ 1

cosh fln t
t00

� �� �
�cos 1�fð Þpð Þ

!

The exact solution of the given double ZARC model is shown
in Fig. 10a. The average computed DRT result using PWL
discretization and RBFs discretization for the normal data
collection range and data point density of 10 ppd are shown in
Fig. 10b and c, respectively. The corresponding squared residuals
for each data collection scenario are tabulated in Table 3. For the
normal data collection range and a data density of 10 ppd, as
shown in Fig. 10, the DRTs estimated using both discretization
methods are consistent with the exact solution. This is true
despite differences in magnitude of the peaks. Particularly, the
results successfully identify the two peaks and their relaxation
characteristics.
Similar to the trend of the single ZARC case, reducing the
collocation points density leads to an increase in average squared
residual for all types of discretization by 40-50 %. On the other
hand, when the data collection range is reduced from 10�2Hz <

fm< 106Hz to 100Hz < fm< 104Hz there is apparent discrepancy
between the computed DRT and the exact solution as indicated by
the average squared residual. As shown in Table 3, the average
squared residual of PWL-based DRT is five times greater than the
squared residual obtained from the regular data collection
situation. In contrast, the average squared residual for all RBF-
based discretization is only 60 % of the PWL approximation. The
average DRT result for the two types of discretization is shown in
Fig. 11. If we compare the estimated DRT profile by the two
methods with that of the exact DRT, as shown in Fig. 11c, the
Gaussian discretization allows the convergence of the result to
zero as to t ! 0 and t ! þ1, whereas the DRT result for the PWL

discretization point upward at t ¼ 10�4 s. This leads to smaller
bias for the Gaussian discretization and we may conclude that RBF-
based DRT performs better than that of PWL when the data
collection range is reduced by half.

3.1.3. Havriliak-Negami Model
The application of Havriliak-Negami model [64,65] is common

in the field of corrosion science [66,67]. This model was chosen for



Fig. 12. The exact DRT result of the Havriliak-Negami case, panel (a), the average computed DRT with normal data range and 10 ppd data collection density using Gaussian
discretization, panel (b), and using PWL discretization, panel (c), at optimal l. The grey band in panel (b) and (c) shows the 3s confidence interval of the result.

Table 4
The minimum residual, optimal l and predicted optimal l from cross validation test for the Havriliak-Negami model with different discretization functions and
data collection scenarios.

Normal range 10 ppd Normal range 5 ppd Half width range 10 ppd

r2tot lOPT lCV r2tot lOPT lCV r2tot lOPT lCV

Piecewise linear 5.19E-02 2.14E-04 3.98E-04 5.99E-02 3.31E-04 5.50E-04 9.10E-02 2.88E-04 1.15E-03
Gaussian 5.05E-02 8.71E-04 1.66E-03 5.64E-02 6.31E-04 1.66E-03 5.60E-02 1.26E-03 3.98E-03
C2 Matérn 4.84E-02 7.94E-04 2.00E-03 5.00E-02 4.57E-04 1.20E-03 5.59E-02 1.38E-03 3.47E-03
C4 Matérn 5.15E-02 1.05E-04 3.16E-04 5.31E-02 6.03E-05 1.91E-04 5.54E-02 1.38E-04 4.79E-04
C6 Matérn 5.13E-02 4.37E-06 8.91E-06 5.69E-02 2.51E-06 7.94E-06 5.72E-02 6.31E-06 1.91E-05
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our study in order to further confirm that RBFs improve the DRT
approximation quality. The impedance response of Havriliak-
Negami model is given by:

Z fð Þ ¼ R1 þ Rct

1 þ i2pft0ð Þf
� �c ð26Þ
where R1 ¼ 10 V, Rct ¼ 50 V, t0 ¼ 0:01 s, f ¼ 0:8 and c ¼ 0:9.9

The corresponding g tð Þ is given by [68]

g tð Þ ¼ Rct

p

t
t0

� �fc
sin cuð Þ

t
t0

� �2f
þ 2 t

t0

� �f
cos pfð Þ þ 1

� 	c
2

ð27Þ

where u ¼ arctanj sin pfð Þ
t
t0

� �f

þcos pfð Þ
j. The average DRTs, for the normal
9 When f ¼ 1 and c ¼ 0:5, one may obtain the Gerischer impedance
[64,65].



Fig. 13. The average DRT value and the confidence region for Gaussian discretization, panel (a) and PWL discretization, panel (b) for the Havriliak-Negami case with half data
collection width. Panel (c) shows the comparison of the average values with the exact solution.
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data collection scenario, computed using the two types of
discretizations are plotted and compared with the exact solution
in Fig. 12. The squared residual, lOPT and lCV of the as-computed
DRT in the three scenarios are reported in Table 4. The squared
residual of the RBF-based DRT and that of PWL-based DRT are
around the same level for the first two data collection scenarios,
i.e., for the regular data collection range with 10 ppd and 5 ppd.
Such trend is similar to the previous two models. When the data
collection range is reduced by half, the average squared residual for
the PWL-based DRT is 60 % higher than that of the RBF-based DRT.
The corresponding average DRT result is shown in Fig. 13, which
have shown similar trend as previous case, particularly, the RBF
discretization allows improvement in approximation at the edge of
data collection range. The result further confirms that the RBFs
discretization allows improvement in the DRT results, only when
the data collection range is limited.

3.1.4. Commentary
The improvement of the DRT obtained with RBFs when the data

collection range is reduced, can be explained by the different nature
of RBFs discretization and PWL discretization. For the PWL case, each
one of the “tent” functions applied for discretizing g tð Þ has a peak at
the collocation point lntm and decrease linearly to zero towards
lntm�1 and lntmþ1. g tð Þ is set to zero for lnt < lnt1 and lnt > lntM.
Thus, the fitting of g tð Þ disregards what happens outside this range
In contrast, the RBFs chosen in this study with the given shape
parameter condition have a domain that extends toð�1; 1Þ. They
converge to zero when lnt ! �1. This allows the consideration of
the asymptotic conditions of g tð Þ during fitting. In fact, if the
frequency range is being truncated, we convert the fitting model:

ZDRT ¼ R1 þ
Z 1

�1

g lntð Þ
1 þ i2pft

dlnt

� R1 þ
Z lntM

lnt0

XM

m¼1
xmfm lntð Þ

1 þ i2pft
dlnt ð28Þ

where lnt0; lntM½ � define the range of data collection. Application
of the RBF basis may impact the DRT deconvolution problem by
extending the range of integration, which leads to a better
approximation of the truncated integral [69]. This, in turn, reduces
the squared residual within the measurement range as compared
with PWL approach when the frequency range is truncated (see the
bias against t plot in Fig. 6).

In practice, restriction of the data collection frame may occur,
especially when collecting the impedance data at extremely low
frequencies (slow relaxations). Forcomplexelectrochemical systems
such as the batteries, the dynamic nature of the sample may lead to
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changes in the propertiesaftera long EIS measurement[70]. This will
imply intrinsic experimental inaccuracies. In addition, in advanced
EIS techniques, e.g., the atomic force microscopy based impedance
spectroscopy, the frequency range cannot be too large, since the
latter can affect the space resolution [71]. Nonetheless, considering
the low frequency responses also implies that additional time is
needed for conducting an experiment. This is particularly unfavor-
able when large scale data acquisitions are used [1]. Therefore, the
restrictions of data collection range will affect the quality of the
estimated DRT. With the application of suitably tuned RBFs, this
negative effect can be mitigated.

3.2. Application to a Lithium Ion Battery Experiment

To investigate the practical utility of the RBF-based DRT, we have
studied the impedance response of a commercial lithium ion battery
(LiCoO2 Ansmann 18650) at the states of charge (SOC) 25 %. In fact,
the SOC is a key parameter for management of LIBs [72] and previous
studies have shown that the DRT of a LIB is connected to the SOC
[29,73,74]. The data were acquired at room temperature for
frequencies between 600 Hz and 5 mHz with 10 ppd. The minimum
frequency, 5 mHz, was chosen because of the experimental time
limitations. In order to reduce the experimental bias and to allow
better statistics, we have repeated the impedance tests 10 times.
Furthermore, we applied non-parametric bootstrap to the EIS data
Fig. 14. The DRT results computed with the imaginary part of the experiment data
for the LIBs at 25 % state of charge using Gaussian discretization, panel (a), and PWL

discretization, panel (b). Regularizations are done with l ¼ 10�2. The grey region
indicates the 3s confidence interval.
[75]: we have created 1000 synthetic impedance responses, each
composed by randomly selecting an impedance response at each
frequency, among the 10 measured values. Moreover, as the exact

DRT, and hence, lOPT is not known, we arbitrarily select l ¼
1 � 10�2 for both the PWL and Gaussian based DRT.

The computed average DRT results for a 25 % SOC is shown in
Fig. 14, with its 3s confidence band. The computed results show
that the PWL and Gaussian based DRT are in reasonable agreement.
Both methods are able to identify the major peaks at the
corresponding relaxation time. There are, however, differences
in the computed DRT results near the edge of the data collection

range, i.e. t ¼ 1:7 � 10�3 s and t ¼ 200 s, corresponding to
f ¼ 600 Hz and 5 m Hz respectively. For the RBF-based regulari-
zation, the highest relaxation time peak locates at t ¼ 50 s and the

lowest relaxation time peak locates at t ¼ 1:9 � 10�3 s. On the
other hand, for PWL-based regularization the highest and lowest
relaxation time peaks are identified at exactly the edges of the data
collection range respectively. Since in principle RBF approximation,
the regression has less bias with respect to the exact DRT. Even
though we do not know whether there are additional peaks
outside the range or the underlying assumption of decaying DRT is
valid, we expect the approximation quality to increase due to RBF's
ability of preconditioning the truncated integral in the fitting
model.

3.3. Software Release

The MATLAB code developed as part of this work is now
released as a freely available MATLAB GUI, named, DRTtools [76].
The GUI interfaces the DRT computation via PWL and RBFs,
including Gaussian, C2, C4, C6 Matérn RBFs, and beyond. The users
can choose the regularization parameter l, the m values, and the
portion of data (real, imaginary or both) that will be used for the
DRT estimation. In turn, the deconvolved DRT is presented in a
figure panel and can be saved as MATLAB figure, txt, or csv file.
Details of the GUI features are shown in the user manual.

4. Conclusions

In this article, we have shown the importance of choosing a
suitable discretization basis for estimation of DRT with regulari-
zation regression. We thus proposed a novel regularization
technique for estimating DRT based on RBFs discretization. The
RBFs discretization is considered because it can, in principle,
achieve fast convergence with fewer sampling points, while
implementation is less complex, compared with other pseudo-
spectral methods. The performance of the RBF-based regulariza-
tion is compared with that of a PWL-based regularization by
synthetic experiments of three EIS models, which have shown an
improvement in the estimation of the DRT only when the data
collection range is limited. Such improvement is a result of the fact
that each RBF discretization function being chosen in this study has
a domain of ð�1; 1Þ. For this reason, the DRT approximation is
estimated outside the measured frequency range, with the
assumption that the underlying DRT decays to zero quickly as
the logarithm of the timescale goes to infinity. It also extends the
range of the original integral problem, which, in turn, leads to the
reduction in average squared residual. In addition, by calculating
the squared residual with various number of collocation points, it
is shown that the RBF-based regularization can lead to faster
convergence rate as compared with that of the PWL-based
regularization only at error free situation.

We further enrich our discussion by interpreting the EIS data
of a LIB at 25% SOC. Both RBF and PWL discretization have
successfully identified the major peaks of the DRT but truncation
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of peak occurred for the PWL-based DRT results. Based on our
discussion on the synthetic experiments, we conclude that RBFs
allow a reasonable prediction of the converging behavior of the
exact DRT if the underlying DRT goes to zero sufficiently fast for
lnt ! �1. Nonetheless, we need to highlight that other potential
advantages of RBFs for DRT should further be explored. For
example, the shape factor, i.e. m in (7) and Table 1, may be
investigated as an additional smoothing effect to the regularized
regression. In addition, as RBFs do not have restrictions on the
collocation points distribution, they can, in principle, be applied for
approximating the DRT from highly scattered data, data with
missing data points, censored data, or non-uniform data sets [77].
Furthermore, the application of RBFs basis could be explored
further with proper enrichment in order to handle the disconti-
nuities in the exact DRT profile (e.g. DRT of fractal elements) [78].
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Appendix A.

The DRT function g lntð Þ can be approximate by a certain
discretization function fm jlnt � lntmj

� �
, at collocation points,

t1; t2; . . . tM.

g lntð Þ ¼
XM
m¼1

xmfm jlnt � lntmj
� � ð29Þ

One should note that (29) is identical to (7). In this work,
fmðjlnt � ln tmjÞ indicates an RBF. The impedance response as
obtained from the DRT result using the relation (2).

ZDRT fð Þ ¼ R1 þ
Z 1

�1

g lntð Þ
1 þ i2pft

dlnt

¼ R1 þ S
M

m¼1
xm

Z 1

�1

fm jlnt � tmjð Þ
1 þ i2pft

dlnt

¼ R1 þ S
M

m¼1
xm

Z 1

�1

1

1 þ 2pftð Þ2
fm jlnt � lntmjð Þdlnt

 

�i
Z 1

�1

2pft

1 þ 2pftð Þ2
fm jlnt � lntmjð ÞdlntÞ ð30Þ

We can express (20) in matrix notation by writing

ZDRT f nð Þ ¼ R1 þ
XM
m¼1

A0� �
nmxm þ i A00� �

nmxm
h i

ð31Þ

which is identical to (9). A0 and A00 matrices are defined as

ðA0Þnm ¼
Z 1

�1

1
1 þ 4p2e2ðyþlnf n�lnf mÞ

fmðjyjÞ dy ð32Þ

and,

ðA00Þnm ¼
Z 1

�1

2peyþlnf n�lnf m

1 þ 4p2e2ðyþlnf n�lnfmÞ
fmðjyjÞdy ð33Þ

where we take y ¼ lnt � lntn. One should note that if the
frequencies are logarithmically equispaced, i.e.,
lnf n � lnf m
� � / n � mð Þ, then A0 and A00 are diagonal-constant
matrices, or Toeplitz matrices. One may then apply the definition
of A0 and A00 for the sum of squares in (11).

In addition, to stabilize the DRT result, a penalty term is added
in (11), which is the square of the norm of the first derivative of the
DRT function

dg lntð Þ
dlnt

2

¼ xTMx ¼
XM
m¼1

XM
l¼1

xlxm Mð Þlm ð34Þ

Since,

dgðlntÞ
dlnt

2

¼
Z 1

�1

dgðlntÞ
dlnt

� 	2

d lnt ð35Þ

by applying relation (7) we have

dg lntð Þ
dlnt

¼
XM
m¼1

xm
dfm jlnt � lntmj

� �
dlnt

ð36Þ

Thus

dg lntð Þ
dlnt

� 	2

¼
XM
l¼1

XM
m¼1

xlxm
dfm jlnt � lntlj

� �
dlnt

dfm jlnt � lntmj
� �

dlnt

ð37Þ
By integrating (27) and comparing the coefficient of the xlxm term
in (24), we can derive the expression for the matrix M

ðMÞlm ¼
Z 1

�1

dfmðjlnt � lntljÞ
dlnt

dfmðjlnt � lntmjÞ
dlnt

dlnt ð38Þ

One notes that if the frequencies are equispaced in logarithm scale
then M is also a Toeplitz matrix.

In addition, the matrix V0 and V00 in (10) are expressed as

V
0� �

n;m
¼ dn;m

ffiffiffiffiffiffiffiffiffiffiffi
w00

n;m
p ð39Þ

V
00� �

n;m
¼ dn;m

ffiffiffiffiffiffiffiffiffiffiffi
w00

n;m
p ð40Þ

where n ¼ 1; . . . ; N and m ¼ 1; . . . ; M
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