
1 

Documentation of the DRTtools 

Author: Ting Hei, WAN 

Date: 28/10/2020 

 

Table of Content 

1. Introduction p.2 

2. Basic Options p.3 

2.1 Importing Data p.4 

2.2 Discretization p.5 

2.3 Data Used p.6 

2.4 Inductance p.6 

2.5 Regularization Derivative p.7 

2.6 Regularization Parameter p.8 

2.7 Sample Number p.8 

3. Options for Radial Basis Function Discretization p.8 

4. Result Display p.9 

5. Run p.9 

5.1 Simple Run p.10 

5.2 Bayesian Run p.12 

5.3 Hilbert Transform p.13 

6. Exporting the Result p.16 

6.1 DRT p.16 

6.2 EIS Regression p.18 

6.3 Figure p.19 

7. References p.20 

 



2 

1. Introduction 

DRTtools is a MATLAB GUI that allows users to analyze electrochemical impedance 

spectroscopy (EIS) data with the distribution of relaxation time (DRT) method. The computation 

of the DRT is based on Tikhonov regularization with continuous function discretization. The 

DRTtools package implementation includes both linear and radial basis functions (RBFs). A 

snapshot of the DRTtools GUI is shown below in Figure 1: 

 

Figure 1 The outlook of the DRTtools GUI 

To launch DRTtools, users should run the DRTtools.m file in MATLAB. Users should note 

that Optimization Toolbox is needed for executing DRTtools.  

When results generated by DRTtools are used for academic purposes, users should cite the 

following reference: 

[1] T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the Discretization Methods on 

the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions 

with DRTtools, Electrochimica Acta, 184 (2015) 483-499.  

(Link: doi.org/10.1016/j.electacta.2015.09.097) 

If the credibility interval function is used for academic works, users should also cite the following 

two papers: 

[2] F. Ciucci, C. Chen, Analysis of Electrochemical Impedance Spectroscopy Data Using the 

Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach, 

Electrochimica Acta, 167 (2015) 439-454.  

https://doi.org/10.1016/j.electacta.2015.09.097
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(Link: doi.org/10.1016/j.electacta.2015.03.123) 

[3] M.B. Effat, F. Ciucci, Bayesian and Hierarchical Bayesian Based Regularization for 

Deconvolving the Distribution of Relaxation Times from Electrochemical Impedance 

Spectroscopy Data, Electrochimica Acta, 247 (2017) 1117-1129. 

(Link: doi.org/10.1016/j.electacta.2017.07.050) 

If the Hilbert Transform function is used for academic works, users should also cite the following 

paper: 

[4] J. Liu, T.H. Wan, F. Ciucci, A Bayesian View on the Hilbert transform and the Kramers-

Kronig Transform of Electrochemical Impedance Data: Probabilistic Estimates and Quality 

Scores, Electrochimica Acta, 357 (2020) 136864. 

(Link: doi.org/10.1016/j.electacta.2020.136864) 

Users are encouraged to read and cite other related articles from our group. A list of related 

references is included in section 7 of this document. Users can also refer to the Github of our group: 

https://github.com/ciuccislab 

for other codes developed for analyzing data from electrochemical experiments. 

2. Basic Options 

In the basic options panel, users can import their EIS data and select their DRT computation 

preferences (Figure 2). The basic options include the methods of discretization, treatment of the 

inductive data, part of data for computation, the regularization parameter, and the sampling number 

for Bayesian run. 

 

Figure 2 The basic options panel 

https://doi.org/10.1016/j.electacta.2015.03.123
https://doi.org/10.1016/j.electacta.2017.07.050
https://doi.org/10.1016/j.electacta.2020.136864
https://github.com/ciuccislab
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2.1 Importing Data 

Data can be imported to DRTtools from .mat, .csv, or .txt file. One should click the import data 

button in order to import the data file. Upon clicking import button, the file management panel 

will open, allowing users to find their file. The .csv and .txt file to be imported should have 3 

columns. From left to right, the first column should correspond to the frequency data. The second 

column should be the real part of the EIS data. The third column should be the imaginary part of 

the EIS data. No column labels should be included. Here in Figure 2, you can find examples of 

.csv and .txt files. 

(a) (b) 

 
 

Figure 3 Sample .csv and .txt import file 

The decimal mark for the imported .txt file can either be a dot or a comma. If users wish to import 

a .mat file, the data should be saved as three separate vectors, “freq” (frequency data), “Z_prime” 

(real part of the EIS data) and “Z_double_prime” (imaginary part of the EIS data). 

Moreover, it is highly recommended that the frequency data is equally spaced in the logarithm 

scale so as to reduce computational efforts. Also, the data should be arranged in such a way that 

the frequencies are in descending order in order to prevent computational problems. After 

importing, the EIS data will be plotted in a complex plot as shown in Figure 4. 



5 

 

Figure 4 The complex plot upon importing the EIS data 

2.2 Discretization 

Users can choose a suitable method for the discretization using the scroll down menu. The 

available discretization method includes piecewise linear and RBF discretization. For the 

piecewise linear discretization, 

𝜙𝑚(𝜏) =

{
 
 

 
 1 −

ln 𝜏 − ln 𝜏𝑚
ln 𝜏𝑚−1 − ln 𝜏𝑚

,        𝜏𝑚−1 < 𝜏 ≤ 𝜏𝑚

1 −
ln 𝜏 − ln 𝜏𝑚

ln 𝜏𝑚+1 − ln 𝜏𝑚
,        𝜏𝑚 < 𝜏 ≤ 𝜏𝑚+1

                        0,                 𝜏𝑚−1 < 𝜏 or 𝜏𝑚+1 > 𝜏

 (1) 

where 𝜏𝑚 is the relaxation time of the mth collocation point. For RBF discretization, users are 

allowed to choose among Gaussian, C2 Matérn, C4 Matérn, C6 Matérn, Cauchy, inverse quadric, 

and inverse quadratic functions. The available RBFs option for discretization are listed in Table 1. 
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Table 1 Available RBFs for discretization 

Function 𝜙𝜇(𝑥) 

Gaussian exp(−(𝜇𝑥)2) 

C2 Matérn exp(−|𝜇𝑥|) (1 + |𝜇𝑥|) 

C4 Matérn exp(−|𝜇𝑥|) (1 + |𝜇𝑥| +
1

3
|𝜇𝑥|2) 

C6 Matérn exp(−|𝜇𝑥|) (1 + |𝜇𝑥| +
2

5
|𝜇𝑥|2 +

1

15
|𝜇𝑥|3) 

Inverse Quadratic 1 (1 + (𝜇𝑥)2)⁄   

Inverse Quadric 1 √1 + (𝜇𝑥)2⁄  

Cauchy 1 (1 + |𝜇𝑥|)⁄  

where 𝑥 = |ln 𝜏 − ln 𝜏𝑚| and 𝜇 is the shape factor of the RBFs. Gaussian function is set as the 

default discretization function. 

2.3 Data Used 

Users can then select which part of the EIS data, either real part “Re Data”, imaginary part “Im 

Data”, or both real and imaginary part together “Combined Re-Im Data”, will be used for the 

computation of the DRT. The “Combined Re-Im Data” is set as the default option. 

 

Figure 5 The “Data Used” option 

2.4 Inductance Included 

There are three options for treating the inductive features: 1) fitting without inductance; 2) fitting 

with inductance; and 3) discarding inductive data (i.e. Im 𝑍 > 0).  
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Figure 6 The “Inductance Included” option 

The 1st option, “Fitting w/o Inductance”, corresponds to the situation of fitting the EIS data with 

the following DRT model: 

𝑍DRT = 𝑅∞ +∫
𝛾(ln 𝜏)

1 + 𝑖2𝜋𝑓𝜏
𝑑 ln 𝜏

∞

−∞

 (2) 

where 𝑅∞ is the Ohmic resistance, and 𝛾(ln 𝜏), the DRT, is a suitable function that describes the 

time relaxation characteristics of the electrochemical system studied.  

The 2nd option, “Fitting with Inductance”, corresponds to fitting the EIS data with an inductive 

element as well. In other words, we fit the EIS data with the following model: 

𝑍DRT = 𝑅∞ + 𝑖2𝜋𝑓𝐿 + ∫
𝛾(ln 𝜏)

1 + 𝑖2𝜋𝑓𝜏
𝑑 ln 𝜏

∞

−∞

 (3) 

where the additional term compared to (2), i.e., 𝑖2𝜋𝑓𝐿, denotes the contribution of an inductance 

𝐿.  

Moreover, users can also discard all the inductive data, i.e., EIS data with positive imaginary part, 

using the 3rd option “Discard Inductive Data”. 

2.5 Regularization Derivative 

Users can choose the order of the derivative used in the penalty. If the 1st order derivative is chosen, 

the norm of the first order derivative of 𝛾(ln 𝜏), i.e.,‖
𝑑𝛾(ln𝜏)

𝑑ln 𝜏 
‖
2

is used as a penalty. When 2nd order 

derivative is chosen, the norm of the second order derivative of 𝛾(ln 𝜏), i.e.,‖
𝑑2𝛾(ln 𝜏)

𝑑ln 𝜏2
‖
2

is used as 

a penalty. 

 

Figure 7 The “Regularization Derivative” option 
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2.6 Regularization Parameter 

This step allows users to select the regularization parameter λ. Higher the λ value, stronger the 

penalty to the sum of squares for fitting, which results in smoother DRT profile. On the other hand, 

smaller the λ value, stronger the oscillation of the DRT profile is. 

 

Figure 8 The “Regularization Parameter” option 

2.7 Sample Number 

During the Bayesian run, samples are drawn from a truncated Gaussian distribution function in 

order to compute the credibility interval (see section 4.2). Users can choose the total number of 

sample drawn during the Bayesian run. The larger the sample number, the more accurate the 

credibility interval is at the expense of time. The sampling would not start if the total number of 

sample is less than 1000. 

 

Figure 9 The “Sample Number” option 

3. Options for Radial Basis Function Discretization 

For all RBF discretizations, users can customize the shape of the RBF. In particular, there are two 

options provided for the shape control of the RBF with respect to its: 1) “FWHM Coefficient” and 

2) “Shape Factor”. By choosing “FWHM Coefficient”, the full width half maximum (FWHM) of 

the RBF is 1/𝑚 times the average relaxation time spacing in logarithm scale, i.e., 

FWHM =
Δ ln 𝜏

𝑚
 (4) 

where 𝑚 is the FWHM coefficient. The 𝑚 value can be entered at the editable space next to the 

“FWHM Control” label. 

Alternatively, users may select the “Shape Factor” option, such that they may specify the shape 

factor 𝜇 in the discretization function directly (see Table 1). The 𝜇 value can be entered at the 
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editable space next to the “FWHM Control” label. The higher 𝜇 value, the wider the discretization 

functions are.  

 

Figure 10 The options for radial basis function discretization 

The shape control is set to be “FWHM coefficient” with the magnitude of 0.5 as default. In other 

words, the default FWHM of the discretization basis equals to two times to that of the average 

relaxation time spacing. 

4. Result Display 

Users can look at the imported EIS, fitting result and the estimated DRT for each computation by 

clicking the tabs above the figure panel (Figure 11). Particularly, the original EIS data and the 

fitting result are shown by clicking “EIS Data”. The corresponding magnitude, phase angle, real 

and imaginary part of the original and fitted EIS data at various frequencies are shown by clicking 

“Magnitude”, “Phase”, “Re Part”, and “Im Part” tab, respectively. The fitting residual with respect 

to the real and imaginary part are given in “Residual-Re” and “Residual-Im”, respectively. The 

DRT result and the EIS scores obtained from the Hilbert transform run are plotted when “DRT” 

and “EIS Scores” are clicked, respectively. 

 

Figure 11 The tabs above the figure panel 

5. Run 

There are three types of computation for DRTtools: 1) Simple run, 2) Bayesian run, and 3) Hilbert 

transform (Figure 12). For simple run, the DRT is computed based on ridge regression. For the 

Bayesian run, in additional to the result from ridge regression, the credibility interval is also 

computed based on Bayesian statistics. As for the Hilbert transform, the Hilbert transformed EIS 

together with a set of EIS scores are computed, which can be utilized to quantify the quality of the 

EIS data. 
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5.1 Simple Run 

The basic DRT computation starts when the “Start” button next to the “Simple Run” label is 

pressed. Generally, it takes a few second for the computation complete, which depends on the 

number of data point of the EIS, and whether the frequency data points are equally spaced in 

logarithm scale. 

 

Figure 12 The buttons for the three types of computation 

DRTtools provides a flag in the top right corner of the figure panel indicating that the computation 

is running (Figure 13) 

 

Figure 13 The “Running” flag during computation 

When the computation is finished, the graphic panel on the right of the panel will be updated as 

shown in the panel (a) of Figure 14. 
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(a) (b) 

  

Figure 14 Sample DRT result of the simple run using (a) RBF and (b) piecewise linear 

discretization 

Due to the property of the piecewise linear discretization, the 𝛾(𝜏) is not interpolated between the 

collocation points. Also, the 𝛾(𝜏) curve is truncated at the maximum and the minimum relaxation 

time and will not extrapolate out of the range, as that of the RBF based discretization does. This is 

shown in panel (b) of Figure 14. 

In addition to the computed DRT, users can look at the fitted impedance by clicking the “EIS Data” 

tab above the figure panel. This is illustrated in Figure 15. 

 

Figure 15 Sample EIS fitting result 

The corresponding plots of the magnitude, the phase angle, the real part, and the imaginary part of 

the fitted impedance data are given in the “Magnitude”, “Phase”, “Re part”, and “Im part” tabs 
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above the figure panel. Moreover, the fitting residual of the real part and the imaginary part are 

given in the “Residual-Re” and the “Residual-Im” tabs respectively. 

5.2 Bayesian Run 

Alternatively, if users would like to compute the credibility interval of the DRT, they may click 

the “Start” button next to the “Bayesian Run” label. The computation of credibility interval is 

based on the work of Ciucci and Chen (2015) and Effat and Ciucci (2017). The credibility interval 

is computed by averaging the Bayesian DRT. Samples are drawn from a truncated Gaussian 

probability distribution function of the form of: 

𝑝(𝒙) ∝ 𝟙(𝒙 ≥ 0) exp (−
1

2
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)) (5) 

where 𝒙 is the vector of 𝛾(𝜏), 𝝁 is the mean, and 𝚺 is the covariance matrix. The sampling is done 

with a Hamiltonian Monte Carlo sampler. For more details, interested users can refer to the work 

of Effat and Ciucci (2017).  

If the credibility interval function is used, users should also cite the following two paper: 

[2] F. Ciucci, C. Chen, Analysis of Electrochemical Impedance Spectroscopy Data Using the 

Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach, 

Electrochimica Acta, 167 (2015) 439-454.  

(Link: doi.org/10.1016/j.electacta.2015.03.123) 

[3] M.B. Effat, F. Ciucci, Bayesian and Hierarchical Bayesian Based Regularization for 

Deconvolving the Distribution of Relaxation Times from Electrochemical Impedance 

Spectroscopy Data, Electrochimica Acta, 247 (2017) 1117-1129. 

(Link: doi.org/10.1016/j.electacta.2017.07.050) 

 

Figure 16 Sample output of the command window during sampling 

 

https://doi.org/10.1016/j.electacta.2015.03.123
https://doi.org/10.1016/j.electacta.2017.07.050
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Users should note that sampling for the computation of the credibility interval takes extra time 

compared to the simple run. The time required for computation and the width of the credibility 

interval reduces if one chooses to use 2nd order derivatives and a larger regularization parameter 

for regularization. Users can also track the sampling progress on the MATLAB command window, 

as shown in Figure 16. 

When the computation is finished, the graphic panel on the right of the GUI will be updated as 

follow: 

 

Figure 17 DRT output sample of the Bayesian run 

In Figure 17, the black line is the Maximum-a-Posteriori (MAP) DRT, blue line is the mean DRT 

and the gray region denote the 99% credibility interval. The credibility interval reflects the 

confidence of the MAP obtained. Narrower the credibility interval implies a higher confidence of 

the MAP estimated. 

5.3 Hilbert Transform 

Moreover, users can assess the quality of their EIS data by carrying out the Bayesian Hilbert 

transform (BHT) computation. Users may click the “Start” button next to the “Hilbert Transform” 

label. The BHT computation is based on Bayesian regression of the same posterior function as the 

Bayesian DRT, i.e., (5), except that we did not considered the constraint of 𝒙 ≥ 0. In other words, 

we considered that 

𝑝(𝒙) ∝ exp (−
1

2
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)) (6) 

where 𝒙  is the vector of 𝛾(𝜏) , and 𝝁  and 𝚺  are the mean vector and the covariance matrix, 

respectively. The expressions of 𝝁 is given as follow: 
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𝝁 =
1

𝜎𝑛2
𝚺𝑨⊤𝒁 (7) 

where 𝒁 is the impedance vector and 𝑨 is the discretization matrix. The expression of 𝚺 is given 

as follow: 

𝚺 = (
1

𝜎𝑛2
𝑨⊤𝑨 +

1

𝜎𝛽
2 𝑰 +

1

𝜎𝜆
2 (
0 0
0 𝑫𝑞

⊤𝑫𝑞 
))

−1

 (8) 

where 𝑰 is the identity matrix and 𝑫𝑞, is the qth differentiation matrix.  

One should note that 𝝁  and 𝚺  depends on three hyperparameters, i.e., 𝜎𝑛 , 𝜎𝛽 , and 𝜎𝜆 . These 

hyperparameters are selected by the optimization of the hyperprior. Furthermore, the BHT applies 

both the real part and the imaginary part of the EIS data for computation. Therefore, the 

computation result of the BHT is not affected by the selection of the “Data Used” option and 

the “Regularization Parameter” inputs as described in section 2.3 and 2.6 of this manual. For 

further details regarding the theory, interested users may refer to ref [4].  

During the Hilbert Transform run, the Bayesian regressed and the Hilbert transformed EIS are 

plotted with the raw impedance data by clicking the “EIS Data” tab. In addition, the three standard 

deviation credible interval for the Hilbert transformed EIS are also shown for the real and 

imaginary part of the result. Moreover, the mean DRTs are calculated with both the real and 

imaginary part of the EIS data. The result is shown in the “DRT” panel as illustrated in Figure 18. 

 

Figure 18 Sample DRT output of the Hilbert transform run 

Users can assess the quality of the EIS data by checking the residual distribution of the real part 

and imaginary part of the Hilbert transformed impedance. The residual of the real part and 

imaginary part of the Hilbert transformed impedance are plotted with the corresponding 3𝜎 

credible band in the “Residual-Re” and “Residual-Im” panel, respectively, as illustrated in Figure 

19. 
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(a) (b) 

  

Figure 19 Sample residual plot of the real part and imaginary part of the Hilbert transformed 

impedance 

Moreover, the Hilbert Transform run also output the EIS scores that quantify the quality of the EIS 

data. The eight EIS scores being calculated are listed in Table 2. 

Table 2 Notation of the EIS scores 

Scores Symbols in the Figure and ref [4] Symbols in the output file 

Residual 𝑠𝑘𝜎,re, 𝑠𝑘𝜎,im s_res_re, s_res_im 

Mean 𝑠𝜇,re, 𝑠𝜇,im s_mu_re, s_mu_im 

Hellinger Distance 𝑠HD,re, 𝑠HD,im s_HD_re, s_HD_im 

Jensen-Shannon Discrepancy 𝑠JSD,re, 𝑠JSD,im  s_JSD_re, s_JSD_im 

where the subscript “re” and “im” denote the scores with respect to the real part and imaginary 

part of the EIS data, respectively. The result is also given in the “EIS Scores” panel as a bar chart 

as shown in Figure 20. 
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Figure 20 The EIS scores bar chart 

All the scores were defined so that their outcomes are real numbers between 0 to 100 %. An HT-

consistent EIS spectrum will score near 100 %. Instead, an HT-inconsistent EIS spectrum will 

score close to 100 %. The detail description of the scores are given in ref [4]. 

If the Hilbert Transform function is used, users should also cite the following paper: 

[4] J. Liu, T.H. Wan, F. Ciucci, A Bayesian View on the Hilbert Transform and the Kramers-

Kronig Transform of Electrochemical Impedance Data: Probabilistic Estimates and Quality 

Scores, Electrochimica Acta, 357 (2020) 136864.  

(Link: doi.org/10.1016/j.electacta.2020.136864) 

6. Exporting the Results 

6.1 DRT 

Users can export the DRT data by clicking the export button next to “DRT”. One may select the 

file type, either .csv file or .txt file. 

 

Figure 21 The “Export Results” panel 

https://doi.org/10.1016/j.electacta.2020.136864
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Upon selecting the file type, the file management panel opens. Users can find his/her preference 

saving directory. 

 

Figure 22 The file management panel 

The first two rows of the saved set correspond to the fitted value of Ohmic resistance 𝑅∞ and 

inductance L. The rows under the resistance and inductance are the DRT results. The 1st column 

has the obtained 𝜏 values and the 2nd column corresponds to the computed 𝛾(𝜏).  

If the credibility interval is computed, the 2nd column has the MAP DRT result, the third column 

has the mean DRT, the 3rd and 4th column corresponds to the upper bound and the lower bound of 

the 99% credibility interval. 

If the Hilbert transform is computed, the 2nd and 3th column corresponds to the 𝛾(𝜏) computed 

with the real part and imaginary part, respectively. 

(a) (b) 

  

Figure 23 Sample DRT .csv and .txt output file for the Bayesian run 
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One should note that when the piecewise linear discretization is used, the total number of computed 

𝛾(𝜏) data points is equal to the number of EIS frequencies. On the other hand, when the RBF 

discretization is used, the total number of computed 𝛾(𝜏) data points is 10 times the number of 

EIS data points used, with 𝜏max being one order of magnitude larger than that of 1/𝑓min; 𝜏min 

being one order of magnitude smaller than that of 1/𝑓max. 

6.2 EIS Regression 

Users can also save the fitted result of the EIS by clicking the “Export” button next to the “EIS”. 

Upon clicking the button, the file management panel will open allowing users to select the suitable 

directory. For the case of simple and Bayesian runs, the 1st column has frequencies. The 2nd and 

3rd column have the real and imaginary parts of the regressed impedance, respectively. The 4th and 

the 5th column correspond to the fitting residual of the real and imaginary part, respectively. 

(a) (b) 

 

 
Figure 24 Panel (a) and (b), .csv and .txt output file for simple run. 

For the Hilbert transform, the first eight rows of the data file store the eight EIS scores, i.e., 𝑠 𝑘𝜎,re, 

𝑠 𝑘𝜎,im, 𝑠𝜇,re, 𝑠𝜇,im, 𝑠HD,re, 𝑠HD,im, 𝑠JSD,re, and 𝑠JSD,im. Following the EIS scores are nine columns 

of data. The 1st column corresponds to the frequency data. The 2nd and 3rd columns are real and 

imaginary parts of the Bayesian regressed impedance data, respectively. The 4th and 5th columns 

are real and imaginary parts of the Bayesian regressed impedance data, respectively. The 6th and 

7th columns correspond to the standard deviation of real and imaginary parts of the Hilbert 

transform estimates. The 8th and 9th columns store the residual of the real and imaginary parts of 

the Hilbert transform estimates. (see Figure 25) 
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(a) 

 
(b) 

 
Figure 25 Panel (a) and (b), .csv and .txt output file for Hilbert transform run 

6.3 Figures 

Users can also save the figures of the result. Particularly, users should first select the figure they 

decided to save by clicking the tabs above the figure panel (see section 4). After that users can 

press the “Save” button next to the “Figure” label to save the figure. Upon pressing the button, the 

file management panel will open allowing users to select their preferred directory. 

 

Figure 26 Sample MATLAB .fig file being exported  
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